Molt-X®

BOTANICALLY BASED INSECTICIDE / NEMATICIDE

For Agricultural and Commercial use, Greenhouse, Shadehouse, Interiorscape and Nursery use on outdoor food crops, indoor plants, turfgrass, outdoor shrubs, trees and ornamentals.

For controlling and repelling insects such as aphids, armyworms, beetles, budworms, cutworms, fungus gnats, leafhoppers, leafminers, lepidopterous larvae, loopers, sawflies, thrips, webworms, and whiteflies; and plant parasitic nematodes such as dagger, golden, and root knot nematodes.

ACTIVE INGREDIENT:
Azadirachtin .. 3.00%
INERT INGREDIENTS: .. 97.00%
TOTAL:... 100.00%

Contains 0.28 lb (128 grams) of azadirachtin per gallon

KEEP OUT OF REACH OF CHILDREN

CAUTION

Molt-X is an emulsifiable concentrate containing 3.0% by weight azadirachtin. It has been evaluated on a wide variety of ornamental, forestry, and food crops. No phytotoxicity at directed field rates has been observed. Molt-X is an insect growth regulator and does not control adult insects. However, Molt-X is also effective as a repellent towards some adult species, as detailed below.

MODE OF ACTION
Molt-X controls insects in the larval, pupal, and nymphal stages by interfering with the metabolism of ecdysone. Insects typically die between larval to larval, larval to pupal, nymph to nymph molts, or during adult eclosion.

COMPATIBILITY
Molt-X has been found to be compatible with the most commonly used insecticides, fungicides and fertilizers. Check compatibility by using the correct proportion of the products in a small test container. Growers should then test the tank-mix combinations for possible adverse effects (such as settling out, flocculation, etc.) and for phytotoxic effects on a small sample of plants prior to use. As environmental conditions can alter the interactions between compounds, a compatibility test is recommend for both new and previously used combinations. Avoid mixtures of several materials and very concentrated spray mixtures. Use caution when making Molt-X applications to open blooms, especially on varieties known to be sensitive. Test a small group of plants for effects on open blooms before making a large scale application.

Do not use Molt-X with Bordeaux mixture, triphenyltin hydroxide, lime sulfur, Rayplex iron or other highly alkaline materials. Use mildly alkaline mixtures immediately after mixing to prevent loss of insecticidal activity.

When using Molt-X in combination with other products, use Molt-X at the rate, or half the rate, specified in the Use Rate Recommendation table. Follow the directions for use, precautions and limitations for all of the product labels used in the combination. Some suggested tank mix combinations are as follows:

- Molt-X plus acephate* Molt-X plus diflubenzuron*
- Molt-X plus Bacillus thuringiensis* (BT) Molt-X plus pyrethrum + piperonyl butoxide (for fogging use)*

Always follow the manufacturer’s Directions for Use and Precautionary Statements.

APPLICATION INSTRUCTIONS

READ ALL DIRECTIONS AND PRECAUTIONS BEFORE USE

Molt-X is exempt from tolerances and may be applied as directed to any food crop up to and including the day of harvest at a rate not exceeding 22.5 fl oz (20 grams active ingredient) per acre per application.

MIXING: Shake well before mixing. Always use this product promptly after mixing with water. Molt-X will break down in the spray solution if not used within 8 hours. Never allow tank mix to stand overnight. Molt-X will break down in spray mixtures that have pH values exceeding 7.0. The recommended pH range is between 5.5 and 6.5. For optimum performance, a buffering agent may be used. When mixing with other approved agrichemicals, always ensure proper agitation in the spray tank to ensure uniform application.

Using the use tables below, determine the amount of Molt-X required for the number of acres to be treated. To a clean spray tank add at least one half the water to be sprayed. Begin agitation and add the determined amount of Molt-X. Add the remaining water and continue agitation.

Molt-X disperses freely when added to water. Always use clean equipment. For uniform distribution on plant canopy and proper dilution, always ensure proper agitation in mixing tanks or vessels. When mixing with other agrichemicals, add solid constituents (such as wettable powders, water dispersible granules or microinsecticides) last in the form of a slurry.
APPLICATION METHOD AND EQUIPMENT: Apply Molt-X as a foliar spray or a drench to soil or soil-less media (e.g., greenhouses) to control insects and nematodes. When needed, soil drenches can also be used to control soil-borne pests, including soil-borne larvae of foliar insect pests. When applying as a drench, avoid excessive leaching. Molt-X can also be applied through sub-surface soil treatment equipment (e.g. turfgrass). To repel adults, apply through fogging equipment. Always follow equipment manufacturer’s use directions.

Apply Molt-X using any powered or manual pesticide application equipment, which includes but is not restricted to: high-volume, low-volume, ultra-low volume, electrostatic, fogging, and chemigation. Follow the original manufacturer’s recommendations when using these types of equipment.

For optimum results, 2 to 3 applications made at 7 to 10 day intervals is recommended, unless otherwise specified. Foliar applications should be made to both sides of leaves. In addition, a surfactant used as per the manufacturer’s directions may improve product performance. The addition of a non-phytotoxic crop oil at rates not exceeding 1.0% (volume / volume) generally enhances insect control.

Molt-X USE RATE RECOMMENDATIONS FOR KEY PESTS BY USE SITE

Molt-X is intended for use on outdoor plants and food crops, plants grown indoors or in greenhouses, shadecloth, interiorscapes and nurseries. Use Molt-X to control any of the following insects and nematodes.

Use the tables below to determine the appropriate use rate for your site/pest combination. Rates are provided in ounces of Molt-X per area or row-length. When infestation is heavy, or when plant canopy is dense, Molt-X may be used at a rate up to twice (2X) that shown in the above table, not to exceed 22.5 oz E.C. / acre. When combining with other insecticides, use half the recommended rate of Molt-X.

USE RATES FOR OUTDOOR PLANTS INCLUDING: FOOD CROPS, TREES, TURFGRASS, NURSERY, AND ALL OUTDOOR ORNAMENTAL PLANTS

<table>
<thead>
<tr>
<th>PEST</th>
<th>RATE ounces of Molt-X/acre</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITEFLIES, such as: Greenhouse whiteflies, Silverleaf whiteflies, Woolly whiteflies</td>
<td>8</td>
<td>Use in combination with 0.25 – 1.0% non-phytotoxic crop oil in sufficient water to cover undersides of leaves.</td>
</tr>
<tr>
<td>LEAFMINERS, such as: Azalea leafminers, Birch Leafminers, Citrus leafminers, Serpentine leafminers, Vegetable leafminers</td>
<td>10</td>
<td>Use in combination with 0.25 – 1.0% non-phytotoxic crop oil in sufficient water to cover undersides of leaves.</td>
</tr>
<tr>
<td>SCALES, such as: Brown soft scales, California red scales, Coffee scales, Olive scales, San Jose scales</td>
<td>10</td>
<td>Use in combination with 0.25 – 1.0% non-phytotoxic crop oil in sufficient water to cover twigs and leaves.</td>
</tr>
<tr>
<td>MEALY BUGS, such as: Citrus mealybugs</td>
<td>10</td>
<td>Use in combination with 0.25 – 1.0% non-phytotoxic crop oil in sufficient water to cover twigs and leaves.</td>
</tr>
<tr>
<td>THRIPS, such as: Citrus thrips, Onion thrips, Thrips palmi</td>
<td>10</td>
<td>Spray when pests first appear. Repeat every 5 to 7 days.</td>
</tr>
<tr>
<td>APHIDS, such as: Cotton aphids, Green peach aphids, Pea aphids, Potato aphids</td>
<td>10</td>
<td>Spray when pests first appear. For food crops: Repeat application after 7-10 days. Use in combination with 0.25 – 1.0% non-phytotoxic crop oil in sufficient water to cover undersides of leaves. For non-food crops: Repeat application every 5 to 7 days.</td>
</tr>
<tr>
<td>PSYLIDS, such as: Pear psylla</td>
<td>8</td>
<td>Spray when pests first appear. For food crops: Repeat application after 7-10 days. Use in combination with 0.25 – 1.0% non-phytotoxic crop oil in sufficient water to cover undersides of leaves. For non-food crops: Repeat application every 5 to 7 days.</td>
</tr>
<tr>
<td>BEETLES, such as: Bark Beetles, Blueberry flea beetles, Boil weevils, Colorado potato beetles, Flea beetles, Japanese beetles, Leaf beetles, Mexican bean beetles, Pepper weevils, Phylloxera, Rose Chafers,Twig girdler</td>
<td>8</td>
<td>Spray when pests first appear. For food crops: Repeat application after 7-10 days. Use in combination with 0.25 – 1.0% non-phytotoxic crop oil in sufficient water to cover undersides of leaves. For non-food crops: Repeat application every 5 to 7 days.</td>
</tr>
<tr>
<td>WEEVILS, such as: Black vine weevils, Strawberry vine weevils</td>
<td>10</td>
<td>Spray when pests first appear. For food crops: Repeat application after 7-10 days. Use in combination with 0.25 – 1.0% non-phytotoxic crop oil in sufficient water to cover undersides of leaves. For non-food crops: Repeat application every 5 to 7 days.</td>
</tr>
<tr>
<td>BORERS, such as: Peach twig borers, Peachtree borers, Dogwood borers, Cranberry borers</td>
<td>10</td>
<td>Spray soon after egg hatch. For food crops: Use in combination with 0.25% - 1.0% non-phytotoxic crop oil in sufficient water to cover undersides of leaves.</td>
</tr>
<tr>
<td>MOLE CRICKETS</td>
<td>10</td>
<td>Spray nymphs soon after egg hatch.</td>
</tr>
</tbody>
</table>
Pest | **Rate** | **Remarks**
--- | --- | ---
Nematodes, such as: Burrowing nematodes, Dagger nematodes, Golden nematodes, Root knot nematodes | 15 | Apply in sufficient amount of water to penetrate in the soil to a depth of 12 inches. Repeat applications every 3 or 4 weeks or as needed.

When infestation is heavy, or when plant canopy is dense, Molt-X may be used at a rate up to twice (2X) that shown in the above table, not to exceed 22.5 oz/acre. When combining with other insecticides, half the rate of Molt-X is recommended.

For Use Indoors or in Greenhouses
Use the table below to determine the appropriate use rate for each pest. Foliar sprays for individual plants should thoroughly wet both sides of the leaves without causing runoff. Groups of potted plants should be sprayed at a rate of one gallon of finished spray for 500 square feet. When used as a drench apply 1 pint of finished spray for each gallon of soil in the pot.

Use Rates for Any Plant Grown Indoors or in Greenhouses, Shadecloth, Interiorscape and Nurseries

<table>
<thead>
<tr>
<th>Pest</th>
<th>Rate</th>
</tr>
</thead>
</table>
| Whiteflies, such as: Greenhouse whiteflies, Silverleaf whiteflies | 10 | Ensure good coverage to top and bottom of leaves against larvae and pupae. Can be applied after bract formation on poinsettias (test for phytotoxicity prior to large scale use).

Leafminers, such as: Serpentine leafminers | 10 | Spray early. Make 2 to 3 applications in rotation with adulticides such as pyrethrins

Soft scales | 10 | Use in combination with 0.5 – 1.0% non-phytotoxic crop oil in sufficient water to cover twigs and leaves.

Mealy bugs | 8 | Always use in combination with 0.5 – 1.0% non-phytotoxic crop oil

Thrips, such as: Western flower thrips | 8 | Spray when pests first appear. Repeat every 5 to 7 days.

** Aphids, such as: Green peach aphids, Pea aphids, Cotton aphids, Rose aphids** | 8 | Spray when pests first appear. Addition of 0.5 – 1.0% non-phytotoxic crop oil will enhance efficacy.

** Lace bugs, such as: Azalea lace bugs** | 8 | Spray when pests first appear.

Flies, such as: Crane flies, Fungus gnats, Shore flies | 8 | Add at least 1 pint of mixture per gallon pot as soil drench. Repeat application every 7 days for 3 weeks. For poinsettias, lilies and bedding plants, also make 1 application 10 to 15 days prior to shipping plants to prevent adult emergence.

Caterpillars such as: Armyworms, Bagworms, Cutworms, Leafrollers, Loopers, Spruce budworms, Webworms | 8 | Spray when pests first appear.

Use Sites
Molt-X CAN BE USED ON:

Greenhouse food crops, such as:
Brassica (cole) crops, cucurbits, eggplants, herbs and spices, legumes, peppers, tomatoes, and other miscellaneous crops grown in greenhouses.

Food crops, including:
Root and tuber vegetables, such as: Artichokes, beets, carrots, ginger, horseradish, potatoes, radishes, rutabagas, sweet potatoes, turmeric, turnips, yams.

Leafy vegetables (including Brassica Leafy Vegetables), such as: Amaranth, broccoli, Brussels sprouts, cabbage, cauliflower, celery, chervil, Chinese cabbage, collards, cress, endives, fennel, kale, kohlrabi, lettuce, mizuna, mustard greens, parsley, purslane, rape greens, rhubarb, spinach, Swiss chard.

Legume vegetables, such as: beans (field, kidney etc.), chickpeas, cowpeas, guar, jackbeans, lablab beans, lentils, peas, pigeon peas, soybeans, sword beans.

Fruiting vegetables, such as: Eggplants, ground cherries, pepinos, peppers, pimentos, tomatillos, tomatoes.

Cucurbit vegetables, such as: bitter melons, Chayotes, Chinese wax gourds, citron melons, cucumbers, sherkins, gourds, muskmelons (such as cantaloupes, casabas cranewash etc.), pumpkins, squash, watermelons.

Citrus fruits, such as: Calamondins, citrus citrons, citrus hybrids, grapefruits, kumquats, lemons, limes, mandarins, oranges, pummelos, Satsuma mandarins.

Pome fruits, such as: Apples, crab apples, loquats, mayhaws, oriental pears, pears, quinces.

Stone fruits, such as: Apricots, cherries, nectarines, peaches, plums, prunes.

Berries, such as: Blackberries and caneberrries, blueberries, currants, elderberries, gooseberries, huckleberries, loganberries, raspberries, strawberries, youngberries.

Cereal grains, such as: Barley, buckwheat, corn, millet, oats, popcorn, rice, rye, sorghum, teosinte, triticale hybrids, wheat, wild rice.

Herbs and spices, including but not limited to: Allspice, angelica, anise, annatto, basil, balm, black and white peppers, borage, burnet, chamomile, caper buds, cardamom, caraway, casia, cassyth, celery seeds, chervil, chives, cinnamon, clary, cloves, coriander (cilantro), costmary, cumin, curry leaf, dills, fennels, fenugreek, grains of paradise, horehound, hyssop, juniper berry, lavender, lemongrass, lovage, mace, marigolds, marjoram, mustard seeds, nasturtium, nutmeg, parsley, pineapple, poppy seeds, rosemary, rue, saffron, sage, savory, sweet bay (bay leaf), tansy, tarragon, thyme, vanilla, wintergreen, woodruff, wormwood.

Bulb vegetables, such as: Garlic, leeks, onions, shallots

Nuts, such as: Almonds, beechnuts, Brazil nuts, butternuts, cashews, chestnuts, chinquapin, filberts, hickory nuts, lychee nuts, macadamias, pecans, pistachios, walnuts.

Oilseed crops, such as: Canola, castor, crambe, guar, jojoba, peanuts, rape, safflower, sesam-e, soybean, sunflower.

Tropical fruits, such as: Atemoya, bananas, breadfruits, cherimoyas, durians, guavas, mangalas, mangos, papayas, passionfruits, starfruits.

Miscellaneous food and non-food crops, such as: Asparagus, avocados, birdseed, cacao, coffee, edible flowers, feijoa, figs, ginseng, grapes, guayule, hops, kiwis, okras, olives, palms, papayas, pawpaws, persimmons, pineapples, rambutans, sugarcanes, tamarillos, tea, tobacco, waterchestnuts, watercress.
IRRIGATION UTILIZING GRAVITY FLOW OR PRESSURIZED WATER AND PESTICIDE INJECTION SYSTEM

Systems using a gravity flow pesticide dispensing system must meter the pesticide into the water at the head of the field and downstream of a hydraulic discontinuity such as a drop structure or weir box to decrease potential for water source contamination from back flow if water flow stops. Systems utilizing a pressurized water and pesticide injection system must meet the following requirements.

a. The system must contain a functional interlocking check valve, vacuum relief valve, and low pressure drain appropriately located on the irrigation pipeline to prevent pesticide distribution is adversely affected. Systems must use a metering pump, such as a positive displacement injection pump (e.g. diaphragm pump) effectively designed and constructed of materials that are compatible with pesticides and capable of being fitted with a system interlock.

b. The pesticide injection pipeline must contain a functional, automatic, quick closing check valve to prevent the flow of the fluid back toward the injection pump.

c. The pesticide injection pipeline must also contain a functional, normally closed, solenoid-operated valve located on the intake side to the injection pump and connected to the system interlock to prevent fluid from being withdrawn from the supply tank when the irrigation system is either automatically or manually shut down.

d. The system must contain functional interlocking controls to automatically shut off the pesticide injection pump when the water pump motor stops.

e. The irrigation line or water pump must include a functional pressure switch which will automatically shut off the pesticide injection pump when the water pump motor stops.

Do not apply when wind speed favors drift beyond the area intended for treatment.

STATEMENTS CONCERNING THE OPERATION OF FLOOD (BASIN) IRRIGATION UTILIZING GRAVITY FLOW OR PRESSURIZED WATER AND PESTICIDE INJECTION SYSTEM

The irrigation line or water pump must include a functional check valve, vacuum relief valve, and low pressure drain appropriately located on the irrigation pipeline to prevent water source contamination from back flow. The pesticide injection pipeline must contain a functional, normally closed, solenoid-operated valve located on the intake side of the injection pump and connected to the system interlock to prevent fluid from being withdrawn from the supply tank when the irrigation system is either automatically or manually shut down. The system must contain functional interlocking controls to automatically shut off the pesticide injection pump when the water pump motor stops. The irrigation line or water pump must include a functional check valve that will stop the water pump motor when the water pressure decreases to the point where pesticide distribution is adversely affected. Systems must use a metering pump, such as a positive displacement injection pump (e.g. diaphragm pump) effectively designed and constructed of materials that are compatible with pesticides and capable of being fitted with a system interlock.

Do not apply when wind speed favors drift beyond the area intended for treatment.

STATEMENTS CONCERNING THE OPERATION OF FLOOD (BASIN) IRRIGATION UTILIZING GRAVITY FLOW OR PRESSURIZED WATER AND PESTICIDE INJECTION SYSTEM

The system must contain a functional check valve, vacuum relief valve and low pressure drain appropriately located on the irrigation pipeline to prevent water source contamination from back flow. The pesticide injection pipeline must contain a functional, normally closed, solenoid-operated valve located on the intake side of the injection pump and connected to the system interlock to prevent fluid from being withdrawn from the supply tank when the irrigation system is either automatically or manually shut down. The system must contain functional interlocking controls to automatically shut off the pesticide injection pump when the water pump motor stops. The irrigation line or water pump must include a functional check valve that will stop the water pump motor when the water pressure decreases to the point where pesticide distribution is adversely affected. Systems must use a metering pump, such as a positive displacement injection pump (e.g. diaphragm pump) effectively designed and constructed of materials that are compatible with pesticides and capable of being fitted with a system interlock.

Do not apply when wind speed favors drift beyond the area intended for treatment.

STATEMENTS CONCERNING THE OPERATION OF FLOOD (BASIN) IRRIGATION UTILIZING GRAVITY FLOW OR PRESSURIZED WATER AND PESTICIDE INJECTION SYSTEM

The system must contain a functional check valve, vacuum relief valve and low pressure drain appropriately located on the irrigation pipeline to prevent water source contamination from back flow. The pesticide injection pipeline must contain a functional, normally closed, solenoid-operated valve located on the intake side of the injection pump and connected to the system interlock to prevent fluid from being withdrawn from the supply tank when the irrigation system is either automatically or manually shut down. The system must contain functional interlocking controls to automatically shut off the pesticide injection pump when the water pump motor stops. The irrigation line or water pump must include a functional check valve that will stop the water pump motor when the water pressure decreases to the point where pesticide distribution is adversely affected. Systems must use a metering pump, such as a positive displacement injection pump (e.g. diaphragm pump) effectively designed and constructed of materials that are compatible with pesticides and capable of being fitted with a system interlock.

Do not apply when wind speed favors drift beyond the area intended for treatment.

STATEMENTS CONCERNING THE OPERATION OF FLOOD (BASIN) IRRIGATION UTILIZING GRAVITY FLOW OR PRESSURIZED WATER AND PESTICIDE INJECTION SYSTEM

The system must contain a functional check valve, vacuum relief valve and low pressure drain appropriately located on the irrigation pipeline to prevent water source contamination from back flow. The pesticide injection pipeline must contain a functional, normally closed, solenoid-operated valve located on the intake side of the injection pump and connected to the system interlock to prevent fluid from being withdrawn from the supply tank when the irrigation system is either automatically or manually shut down. The system must contain functional interlocking controls to automatically shut off the pesticide injection pump when the water pump motor stops. The irrigation line or water pump must include a functional check valve that will stop the water pump motor when the water pressure decreases to the point where pesticide distribution is adversely affected. Systems must use a metering pump, such as a positive displacement injection pump (e.g. diaphragm pump) effectively designed and constructed of materials that are compatible with pesticides and capable of being fitted with a system interlock.

Do not apply when wind speed favors drift beyond the area intended for treatment.

STATEMENTS CONCERNING THE OPERATION OF FLOOD (BASIN) IRRIGATION UTILIZING GRAVITY FLOW OR PRESSURIZED WATER AND PESTICIDE INJECTION SYSTEM

The system must contain a functional check valve, vacuum relief valve and low pressure drain appropriately located on the irrigation pipeline to prevent water source contamination from back flow. The pesticide injection pipeline must contain a functional, normally closed, solenoid-operated valve located on the intake side of the injection pump and connected to the system interlock to prevent fluid from being withdrawn from the supply tank when the irrigation system is either automatically or manually shut down. The system must contain functional interlocking controls to automatically shut off the pesticide injection pump when the water pump motor stops. The irrigation line or water pump must include a functional check valve that will stop the water pump motor when the water pressure decreases to the point where pesticide distribution is adversely affected. Systems must use a metering pump, such as a positive displacement injection pump (e.g. diaphragm pump) effectively designed and constructed of materials that are compatible with pesticides and capable of being fitted with a system interlock.

Do not apply when wind speed favors drift beyond the area intended for treatment.

STATEMENTS CONCERNING THE OPERATION OF FLOOD (BASIN) IRRIGATION UTILIZING GRAVITY FLOW OR PRESSURIZED WATER AND PESTICIDE INJECTION SYSTEM

The system must contain a functional check valve, vacuum relief valve and low pressure drain appropriately located on the irrigation pipeline to prevent water source contamination from back flow. The pesticide injection pipeline must contain a functional, normally closed, solenoid-operated valve located on the intake side of the injection pump and connected to the system interlock to prevent fluid from being withdrawn from the supply tank when the irrigation system is either automatically or manually shut down. The system must contain functional interlocking controls to automatically shut off the pesticide injection pump when the water pump motor stops. The irrigation line or water pump must include a functional check valve that will stop the water pump motor when the water pressure decreases to the point where pesticide distribution is adversely affected. Systems must use a metering pump, such as a positive displacement injection pump (e.g. diaphragm pump) effectively designed and constructed of materials that are compatible with pesticides and capable of being fitted with a system interlock.

Do not apply when wind speed favors drift beyond the area intended for treatment.

STATEMENTS CONCERNING THE OPERATION OF FLOOD (BASIN) IRRIGATION UTILIZING GRAVITY FLOW OR PRESSURIZED WATER AND PESTICIDE INJECTION SYSTEM

The system must contain a functional check valve, vacuum relief valve and low pressure drain appropriately located on the irrigation pipeline to prevent water source contamination from back flow. The pesticide injection pipeline must contain a functional, normally closed, solenoid-operated valve located on the intake side of the injection pump and connected to the system interlock to prevent fluid from being withdrawn from the supply tank when the irrigation system is either automatically or manually shut down. The system must contain functional interlocking controls to automatically shut off the pesticide injection pump when the water pump motor stops. The irrigation line or water pump must include a functional check valve that will stop the water pump motor when the water pressure decreases to the point where pesticide distribution is adversely affected. Systems must use a metering pump, such as a positive displacement injection pump (e.g. diaphragm pump) effectively designed and constructed of materials that are compatible with pesticides and capable of being fitted with a system interlock.

Do not apply when wind speed favors drift beyond the area intended for treatment.